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We consider a numerical model of the instability of an ion beam. The energy of the oscilla-
tions is concentrated mainly in several neighboring modes that have a maximum increment
in the linear theory. The instability has been traced up to the complete vanishing of the beam.

We study in the present paper, using the method of particles in cells, the instability of an ion beam in
a non-isothermal plasma Tg > T;. It is known [1-3] that in this case ion-acoustic oscillations are excited,
The nonlinear stage of development of the instability calls for a kinetic analysis, and this indeed is the
reason for using the method of particles in cells (see also [4,5]). A similar method was used in [4] to in-
vestigate the instability of an electron beam against a background of immobile cold ions, and in [6] to study
the entry of beam into a plasmaj; the instability of two identical mutually interpenetrating ion beams was
considered in [7] at M = 2 andM = 8, when there is no one-dimensional instability.

Confining ourselves to particle (ion) velocities much lower than the thermal electron velocity, we as-
sume that the electrons have a Boltzmann distribution

ng = ng exp (e@/Te)

It is then necessary to trace only the motion of the ions. In the one-
dimensional case the problem reduces to a solution of the following equa-
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! where ¢ is the potential, f;(x, v, t) is the ion distribution function, and
) . . Lt pi() is the density of the j-th particle with halfwidth « in x space. In

A A A Eq. (2), the force acting on the j-th particle and its velocity are referred
to the center of the particle,

When solving the boundary-value problem for the equation
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the latter was replaced by the equation (cf. [5])
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g 7 7 J K the solution of which at t — = is the solution of Eq. (1). Periodic boun-
Fig. 2 dary conditions were imposed at the boundaries of the calculation interval.
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06 The fitting method proposed in [5] was modified for the boundary
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Here u is the beam velocity, ny, and np are the density of the
beam and the plasma, respectively, and

e, = V7T, /M;

The number of particles is 2000, the length of the calculation
interval is 20 Debye lengths,

Figure 1 shows the temporal evolution of the square of the
amplitude of the Fourier harmonic of the electrostatic potential ¢
corresponding to the maximum increment (the time is measured in
units of w,™!). At first we have relaxation of the initial conditions
@ (x) = 0 to equilibrium thermal noise ¢ ~ 5 - 107°T;) — standing
waves that are multiples of the calculation length, The beam is
turned on at the instant t = 6 and two-stream instability develops
after a certain residual relaxation. As seen from Fig. 1, the insta-
bility development can be subdivided into three stages.

The first stage is an exponential growth of the oscillation
energy. Figure 2 shows the values of the increment v (k) calculated
in accordance with the hydrodynamic model in the linear approxima-
tion [1] (solid curve) and the values obtained from the numerical ex-
periment (circles). The thin vertical lines correspond to wave-
lengths that are multiples of the calculation length. As seen from
Fig. 3, which shows the phase plane vx, the plasma and the beam
are modulated at the instant t = 14 at the wavelength of the resonant
harmonic. When e¢, ~ 0.05T, (¢ 4 is the resonant potential), the
linear stage terminates, and approximately 20% of the beam particles
are accelerated to vyax/u ~ 1.3, while most of them (80%) are

Fig. 4 strongly decelerated to vy /u ~ 0.1. After a time equal to several
: times wo'i, saturation of the resonant harmonics sets in and the
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where v, is the oscillatory velocity of the plasma ions, and is of
the order of the initial beam energy; the harmonics with wavelengths
A~ 2X, (A4 is the resonant wavelength) continue to increase,
There is no plateau on the distribution function, and characteristic
"holes" are seen on the phase plane at t = 20 (Fig. 4), corresponding

to concentration of the energy in three neighboring modes having a
maximum increment,

‘ . The third stage is a fall-off in the oscillations and the onset
s B of oscillations with a period

T

T~ Veq)max KM,

near a stationary level higher by more than one order of magnitude

Fig. 5 the level on the inijtial thermal noise. In this stage {t = 45), as fol-
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lows from the phase picture (Fig. 5), the regular picture vanishes and the particles become mixed over the
phase space. This allows us to assume that the influence of the beam is small after the resonant harmonics
saturate, and the succeeding process is the damping of the large-amplitude wave for the case of a mono-
chromatic wave, a case considered in [8].

To verify the accuracy of the calculation, the beam velocity was assumed to be 2cx . As expected, no
instability was excited. Variation of the number of particles over the Debye length and over the length of
the calculation interval did not cause noticeable changes in the results.

In [7], in the case of a weak interaction withM = 8, the energy of the oscillations begins to oscillate
about a stationary level that exceeds by one order of magnitude the thermal noise, as in the conditions
nb/ n_ <« 1 under consideration. For M = 2 (strong interaction) the oscillation energy drops almost to the
level of the thermal noise. The amplitudes of the Fourier harmonics are not given in [7], but the figure
there reveals the existence of periodicity in phase space, Obviously, this is the result of the concentration
of the oscillation energy in several adjacent modes,
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